progressive era literature

how to simplify expressions with exponents calculator

By learning to identify patterns and relationships, and by using the properties of exponents and logarithms to simplify expressions, you can improve your ability to think critically and solve complex problems. To find the product of powersMultiplication of two or more values in exponential form that have the same base-. Write answers with positive exponents. If we keep separating the terms and following the properties, we'll be fine. Plus, get practice tests, quizzes, and personalized coaching to help you You can have more time for your hobbies by making small changes to your daily routine. Our first expression has x^3y^8 / y^3x^7. - Definition & Examples, Expressing Relationships as Algebraic Expressions, Practice Simplifying Algebraic Expressions, Expanding & Simplifying Algebraic Expressions, Translating an Addition Statement into an Algebraic Expression, Roots and Powers of Algebraic Expressions, Translating a Division Statement into an Algebraic Expression, Taking the Derivative of arcsin: How-To & Tutorial, Working Scholars Bringing Tuition-Free College to the Community. Enter an exponential expression below which you want to simplify. Simplify Calculator. Examples Simplify Simplify Simplify Solve Now How to Simplify Exponents or Powers on the TI For instance, a pixel is the smallest unit of light that can be perceived and recorded by a digital camera. Being able to simplify expressions not only makes solving equations easier, but it also helps to improve your understanding of math concepts and how they apply to real-world problems. . For example, you can combine 3x and 2x by adding them to get 3x + 2x = 5x. The calculator will then show you the simplified version of the expression, along with a step-by-step breakdown of the simplification process. Follow the PEMDAS rule to determine the order of terms to be simplified in an expression. The algebra section allows you to expand, factor or simplify virtually any expression you choose. Step 1, how do i find my safe credit union account number, how to write a number in expanded form in two ways, simplify expressions with rational exponents calculator. One of the main benefits of simplifying expressions is that it can save you time and effort. This calculator will try to simplify a polynomial as much as possible. When they are, the basic rules of exponents and exponential notation apply when writing and simplifying algebraic expressions that contain exponents. Yes. Simplifying algebraic expressions refer to the process of reducing the expression to its lowest form. Step 1: Enter the expression you want to simplify into the editor. We begin by using the associative and commutative properties of multiplication to regroup the factors. 2 42 + 18 / 6 - 30. A fully demonstrated steps by steps solution of a numerical (not a question), awesome makes life easy and has saved me an enormous amount of time the app is worth 20 dollars a month. Consider the expression [latex]{\left({x}^{2}\right)}^{3}[/latex]. [latex]\begin{array}\text{ }x^{3}\cdot x^{4}\hfill&=\stackrel{\text{3 factors } \text{ 4 factors}}{x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x} \\ \hfill& =\stackrel{7 \text{ factors}}{x\cdot x\cdot x\cdot x\cdot x\cdot x\cdot x} \\ \hfill& =x^{7}\end{array}[/latex], [latex]{a}^{m}\cdot {a}^{n}={a}^{m+n}[/latex], [latex]{2}^{3}\cdot {2}^{4}={2}^{3+4}={2}^{7}[/latex]. Use the distributive property to multiply any two polynomials. Simplify radical,rational expression with Step The simplification calculator allows you to take a simple or complex expression and simplify and reduce the expression to it's simplest form. Free simplify calculator - simplify algebraic expressions step-by-step. Also, instead of qualifying variables as nonzero each time, we will simplify matters and assume from here on that all variables represent nonzero real numbers. Look at the above examples, and see whether and how we have used this property for the simplification of expressions. With a negative exponent, this causes the expression to reciprocate and change exponent to positive, so start with 1/ (4096)^ (5/6) = 1/4^5 = 1/1024. Related Symbolab blog posts [latex]\frac{t^{8}}{t^{8}}=\frac{\cancel{t^{8}}}{\cancel{t^{8}}}=1[/latex], If we were to simplify the original expression using the quotient rule, we would have. Simplifying radical expressions calculator Free radical equation calculator - solve radical equations step-by-step. The rules for exponents may be combined to simplify expressions. Free simplify calculator - simplify algebraic expressions step-by-step. . It includes four examples. simplify rational or radical expressions with our free step-by-step math calculator. Simplify x.x2 Simplification can also help to improve your understanding of math concepts. Now consider an example with real numbers. Solve - Simplifying exponent expressions calculator Solve Simplify Factor Expand Graph GCF LCM Solve an equation, inequality or a system. Simplify the expression using the properties of exponents calculator - Solve equations with PEMDAS order of operations showing the work. For the time being, we must be aware of the condition [latex]m>n[/latex]. Simplify Example of Dividing Monomials When you divide monomial expressions, subtract the exponents of like bases. Next, we separate them into multiplication: 16/8 times p/p^3 times q^2 / q^4 times r^9. So, we will be solving the brackets first by multiplying x to the terms written inside. Simplify each expression using the zero exponent rule of exponents. Created by Sal Khan and Monterey Institute for Technology and Education. Check out. In a similar way to the product rule, we can simplify an expression such as \displaystyle \frac { {y}^ {m}} { {y}^ {n}} ynym, where \displaystyle m>n m > n. We need to learn how to simplify expressions as it allows us to work more efficiently with algebraic expressions and ease out our calculations. . This implies, 2ab + 4b (b2) - 4b (2a). This section will provide several examples of how to simplify expressions with exponents including at least one problem about each property given above. Algebra often involves simplifying expressions, but some expressions are more confusing to deal with than others. But there is support available in the form of. Simplify is the same as reducing to lowest terms when we talk about fractions. Since we have x^3 divided by x^7, we subtract their exponents. Free simplify calculator - simplify algebraic expressions step-by-step. [latex]\begin{array}{ccc}\hfill \frac{{h}^{3}}{{h}^{5}}& =& \frac{h\cdot h\cdot h}{h\cdot h\cdot h\cdot h\cdot h}\hfill \\ & =& \frac{\cancel{h}\cdot \cancel{h}\cdot \cancel{h}}{\cancel{h}\cdot \cancel{h}\cdot \cancel{h}\cdot h\cdot h}\hfill \\ & =& \frac{1}{h\cdot h}\hfill \\ & =& \frac{1}{{h}^{2}}\hfill \end{array}[/latex], [latex]\begin{array}{ccc}\hfill \frac{{h}^{3}}{{h}^{5}}& =& {h}^{3 - 5}\hfill \\ & =& \text{ }{h}^{-2}\hfill \end{array}[/latex], [latex]\begin{array}{ccc}{a}^{-n}=\frac{1}{{a}^{n}}& \text{and}& {a}^{n}=\frac{1}{{a}^{-n}}\end{array}[/latex], [latex]{a}^{-n}=\frac{1}{{a}^{n}}[/latex], [latex]\begin{array}{ccc}\hfill {\left(pq\right)}^{3}& =& \stackrel{3\text{ factors}}{{\left(pq\right)\cdot \left(pq\right)\cdot \left(pq\right)}}\hfill \\ & =& p\cdot q\cdot p\cdot q\cdot p\cdot q\hfill \\ & =& \stackrel{3\text{ factors}}{{p\cdot p\cdot p}}\cdot \stackrel{3\text{ factors}}{{q\cdot q\cdot q}}\hfill \\ & =& {p}^{3}\cdot {q}^{3}\hfill \end{array}[/latex], [latex]{\left(ab\right)}^{n}={a}^{n}{b}^{n}[/latex]. All other trademarks and copyrights are the property of their respective owners. BYJU'S online simplifying. Using a calculator, we enter [latex]2,048\times 1,536\times 48\times 24\times 3,600[/latex] and press ENTER. Practice your math skills and learn step by step with our math solver. Use this, i was struggling with simplifying but this calculator has everything needed, this app was amazing and the best responses and the best Solutions I would refer this to everyone . Look at the image given below showing another simplifying expression example. Products of exponential expressions with the same base can be simplified by adding exponents. As a member, you'll also get unlimited access to over 88,000 Let me show you another one. EXAMPLE 1. Then we simplify the terms containing exponents. Putting the answers together, we have [latex]{h}^{-2}=\frac{1}{{h}^{2}}[/latex]. . Therefore, 4ps - 2s - 3(ps +1) - 2s = ps - 4s - 3. We follow the same PEMDAS rule to simplify algebraic expressions as we do for simple arithmetic expressions. Exponent Calculator - Simplify Exponential Expression. When you are working with complex equations, it can be easy to get lost in the details and lose track of what you are trying to solve. Suppose you want the value y x. We start at the beginning. The Power Property for Exponents says that (am)n = am n when m and n are whole numbers. Write answers with positive exponents. BYJU'S online simplifying Estimating Square Roots | How Do You Find the Square Root of a Number? This step is important when you first begin because you can see exactly what we are doing. Being a virtual student, it's been able to help study and understand and breakdown concepts that I was not previously aware of. Simplify the expression \frac { { { {x}^ {2}}}} { { { {x}^ { {-3}}}}} x3x2. Example 1: Find the simplified form of the expression formed by the following statement: "Addition of k and 8 multiplied by the subtraction of k from 16". Contains a great and useful calculator, this is one of the best apps relating to education no other app compares with this app it helped me to understand my work better it even shows how it was worked out I recommend to 7 of my friends and they are happy about this app. This time we have 5x^2y^9 / 15y^9x^4. This is true for any nonzero real number, or any variable representing a nonzero real number. Lets rewrite the original problem differently and look at the result. This same logic can be used for any positive integer exponent n to show that a 1 n = a n. RATIONAL EXPONENT a 1 n Our final answer is 2r^9 / (p^2 q^2). On most calculators, you enter the base, press the exponent key and enter the exponent. To use the Simplify Calculator, simply enter your expression into the input field and press the Calculate button. Looking for help with your math homework? Simplify algebraic expressions with exponents. The sole exception is the expression [latex]{0}^{0}[/latex]. Finally, our last step - multiplying the fractions straight across. If we equate the two answers, the result is [latex]{t}^{0}=1[/latex]. The basic rule for simplifying expressions is to combine like terms together and write unlike terms as it is. 42 is 16. Let us take one more example to understand it. To simplify this expression, we need to use the concept of multiplication of algebraic expressions. We have shown that the exponential expression [latex]{a}^{n}[/latex] is defined when [latex]n[/latex] is a natural number, 0, or the negative of a natural number. Therefore, 3/4x + y/2 (4x + 7) = 3/4x + 2xy + 7y/2. 118 lessons The calculator above accepts negative bases, but does not compute imaginary numbers. The goal of simplification is to make the expression easier to work with and understand, while still representing the same value. [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}=\frac{{f}^{14}}{{e}^{14}}[/latex], [latex]\begin{array}{ccc}\hfill {\left({e}^{-2}{f}^{2}\right)}^{7}& =& {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7}\hfill \\ & =& \frac{{f}^{14}}{{e}^{14}}\hfill \end{array}[/latex], [latex]\begin{array}{ccc}\hfill {\left({e}^{-2}{f}^{2}\right)}^{7}& =& {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7}\hfill \\ & =& \frac{{\left({f}^{2}\right)}^{7}}{{\left({e}^{2}\right)}^{7}}\hfill \\ & =& \frac{{f}^{2\cdot 7}}{{e}^{2\cdot 7}}\hfill \\ & =& \frac{{f}^{14}}{{e}^{14}}\hfill \end{array}[/latex], [latex]{\left(\frac{a}{b}\right)}^{n}=\frac{{a}^{n}}{{b}^{n}}[/latex], CC licensed content, Specific attribution, http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2, http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@3.278:1/Preface, [latex]\left(3a\right)^{7}\cdot\left(3a\right)^{10} [/latex], [latex]\left(\left(3a\right)^{7}\right)^{10} [/latex], [latex]\left(3a\right)^{7\cdot10} [/latex], [latex]{\left(a\cdot b\right)}^{n}={a}^{n}\cdot {b}^{n}[/latex], [latex]\left(-3\right)^{5}\cdot \left(-3\right)[/latex], [latex]{x}^{2}\cdot {x}^{5}\cdot {x}^{3}[/latex], [latex]{t}^{5}\cdot {t}^{3}={t}^{5+3}={t}^{8}[/latex], [latex]{\left(-3\right)}^{5}\cdot \left(-3\right)={\left(-3\right)}^{5}\cdot {\left(-3\right)}^{1}={\left(-3\right)}^{5+1}={\left(-3\right)}^{6}[/latex], [latex]{\left(\frac{2}{y}\right)}^{4}\cdot \left(\frac{2}{y}\right)[/latex], [latex]{t}^{3}\cdot {t}^{6}\cdot {t}^{5}[/latex], [latex]{\left(\frac{2}{y}\right)}^{5}[/latex], [latex]\frac{{\left(-2\right)}^{14}}{{\left(-2\right)}^{9}}[/latex], [latex]\frac{{\left(z\sqrt{2}\right)}^{5}}{z\sqrt{2}}[/latex], [latex]\frac{{\left(-2\right)}^{14}}{{\left(-2\right)}^{9}}={\left(-2\right)}^{14 - 9}={\left(-2\right)}^{5}[/latex], [latex]\frac{{t}^{23}}{{t}^{15}}={t}^{23 - 15}={t}^{8}[/latex], [latex]\frac{{\left(z\sqrt{2}\right)}^{5}}{z\sqrt{2}}={\left(z\sqrt{2}\right)}^{5 - 1}={\left(z\sqrt{2}\right)}^{4}[/latex], [latex]\frac{{\left(-3\right)}^{6}}{-3}[/latex], [latex]\frac{{\left(e{f}^{2}\right)}^{5}}{{\left(e{f}^{2}\right)}^{3}}[/latex], [latex]{\left(e{f}^{2}\right)}^{2}[/latex], [latex]{\left({x}^{2}\right)}^{7}[/latex], [latex]{\left({\left(2t\right)}^{5}\right)}^{3}[/latex], [latex]{\left({\left(-3\right)}^{5}\right)}^{11}[/latex], [latex]{\left({x}^{2}\right)}^{7}={x}^{2\cdot 7}={x}^{14}[/latex], [latex]{\left({\left(2t\right)}^{5}\right)}^{3}={\left(2t\right)}^{5\cdot 3}={\left(2t\right)}^{15}[/latex], [latex]{\left({\left(-3\right)}^{5}\right)}^{11}={\left(-3\right)}^{5\cdot 11}={\left(-3\right)}^{55}[/latex], [latex]{\left({\left(3y\right)}^{8}\right)}^{3}[/latex], [latex]{\left({t}^{5}\right)}^{7}[/latex], [latex]{\left({\left(-g\right)}^{4}\right)}^{4}[/latex], [latex]\frac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}[/latex], [latex]\frac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}[/latex], [latex]\begin{array}\text{ }\frac{c^{3}}{c^{3}} \hfill& =c^{3-3} \\ \hfill& =c^{0} \\ \hfill& =1\end{array}[/latex], [latex]\begin{array}{ccc}\hfill \frac{-3{x}^{5}}{{x}^{5}}& =& -3\cdot \frac{{x}^{5}}{{x}^{5}}\hfill \\ & =& -3\cdot {x}^{5 - 5}\hfill \\ & =& -3\cdot {x}^{0}\hfill \\ & =& -3\cdot 1\hfill \\ & =& -3\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}& =& \frac{{\left({j}^{2}k\right)}^{4}}{{\left({j}^{2}k\right)}^{1+3}}\hfill & \text{Use the product rule in the denominator}.\hfill \\ & =& \frac{{\left({j}^{2}k\right)}^{4}}{{\left({j}^{2}k\right)}^{4}}\hfill & \text{Simplify}.\hfill \\ & =& {\left({j}^{2}k\right)}^{4 - 4}\hfill & \text{Use the quotient rule}.\hfill \\ & =& {\left({j}^{2}k\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 1& \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}& =& 5{\left(r{s}^{2}\right)}^{2 - 2}\hfill & \text{Use the quotient rule}.\hfill \\ & =& 5{\left(r{s}^{2}\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 5\cdot 1\hfill & \text{Use the zero exponent rule}.\hfill \\ & =& 5\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]\frac{{\left(d{e}^{2}\right)}^{11}}{2{\left(d{e}^{2}\right)}^{11}}[/latex], [latex]\frac{{w}^{4}\cdot {w}^{2}}{{w}^{6}}[/latex], [latex]\frac{{t}^{3}\cdot {t}^{4}}{{t}^{2}\cdot {t}^{5}}[/latex], [latex]\frac{{\theta }^{3}}{{\theta }^{10}}[/latex], [latex]\frac{{z}^{2}\cdot z}{{z}^{4}}[/latex], [latex]\frac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}[/latex], [latex]\frac{{\theta }^{3}}{{\theta }^{10}}={\theta }^{3 - 10}={\theta }^{-7}=\frac{1}{{\theta }^{7}}[/latex], [latex]\frac{{z}^{2}\cdot z}{{z}^{4}}=\frac{{z}^{2+1}}{{z}^{4}}=\frac{{z}^{3}}{{z}^{4}}={z}^{3 - 4}={z}^{-1}=\frac{1}{z}[/latex], [latex]\frac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}={\left(-5{t}^{3}\right)}^{4 - 8}={\left(-5{t}^{3}\right)}^{-4}=\frac{1}{{\left(-5{t}^{3}\right)}^{4}}[/latex], [latex]\frac{{\left(-3t\right)}^{2}}{{\left(-3t\right)}^{8}}[/latex], [latex]\frac{{f}^{47}}{{f}^{49}\cdot f}[/latex], [latex]\frac{1}{{\left(-3t\right)}^{6}}[/latex], [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}[/latex], [latex]\frac{-7z}{{\left(-7z\right)}^{5}}[/latex], [latex]{b}^{2}\cdot {b}^{-8}={b}^{2 - 8}={b}^{-6}=\frac{1}{{b}^{6}}[/latex], [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}={\left(-x\right)}^{5 - 5}={\left(-x\right)}^{0}=1[/latex], [latex]\frac{-7z}{{\left(-7z\right)}^{5}}=\frac{{\left(-7z\right)}^{1}}{{\left(-7z\right)}^{5}}={\left(-7z\right)}^{1 - 5}={\left(-7z\right)}^{-4}=\frac{1}{{\left(-7z\right)}^{4}}[/latex], [latex]\frac{{25}^{12}}{{25}^{13}}[/latex], [latex]{t}^{-5}=\frac{1}{{t}^{5}}[/latex], [latex]{\left(a{b}^{2}\right)}^{3}[/latex], [latex]{\left(-2{w}^{3}\right)}^{3}[/latex], [latex]\frac{1}{{\left(-7z\right)}^{4}}[/latex], [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}[/latex], [latex]{\left(a{b}^{2}\right)}^{3}={\left(a\right)}^{3}\cdot {\left({b}^{2}\right)}^{3}={a}^{1\cdot 3}\cdot {b}^{2\cdot 3}={a}^{3}{b}^{6}[/latex], [latex]2{t}^{15}={\left(2\right)}^{15}\cdot {\left(t\right)}^{15}={2}^{15}{t}^{15}=32,768{t}^{15}[/latex], [latex]{\left(-2{w}^{3}\right)}^{3}={\left(-2\right)}^{3}\cdot {\left({w}^{3}\right)}^{3}=-8\cdot {w}^{3\cdot 3}=-8{w}^{9}[/latex], [latex]\frac{1}{{\left(-7z\right)}^{4}}=\frac{1}{{\left(-7\right)}^{4}\cdot {\left(z\right)}^{4}}=\frac{1}{2,401{z}^{4}}[/latex], [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}={\left({e}^{-2}\right)}^{7}\cdot {\left({f}^{2}\right)}^{7}={e}^{-2\cdot 7}\cdot {f}^{2\cdot 7}={e}^{-14}{f}^{14}=\frac{{f}^{14}}{{e}^{14}}[/latex], [latex]{\left({g}^{2}{h}^{3}\right)}^{5}[/latex], [latex]{\left(-3{y}^{5}\right)}^{3}[/latex], [latex]\frac{1}{{\left({a}^{6}{b}^{7}\right)}^{3}}[/latex], [latex]{\left({r}^{3}{s}^{-2}\right)}^{4}[/latex], [latex]\frac{1}{{a}^{18}{b}^{21}}[/latex], [latex]{\left(\frac{4}{{z}^{11}}\right)}^{3}[/latex], [latex]{\left(\frac{p}{{q}^{3}}\right)}^{6}[/latex], [latex]{\left(\frac{-1}{{t}^{2}}\right)}^{27}[/latex], [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}[/latex], [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}[/latex], [latex]{\left(\frac{4}{{z}^{11}}\right)}^{3}=\frac{{\left(4\right)}^{3}}{{\left({z}^{11}\right)}^{3}}=\frac{64}{{z}^{11\cdot 3}}=\frac{64}{{z}^{33}}[/latex], [latex]{\left(\frac{p}{{q}^{3}}\right)}^{6}=\frac{{\left(p\right)}^{6}}{{\left({q}^{3}\right)}^{6}}=\frac{{p}^{1\cdot 6}}{{q}^{3\cdot 6}}=\frac{{p}^{6}}{{q}^{18}}[/latex], [latex]{\\left(\frac{-1}{{t}^{2}}\\right)}^{27}=\frac{{\\left(-1\\right)}^{27}}{{\\left({t}^{2}\\right)}^{27}}=\frac{-1}{{t}^{2\cdot 27}}=\frac{-1}{{t}^{54}}=-\frac{1}{{t}^{54}}[/latex], [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}={\left(\frac{{j}^{3}}{{k}^{2}}\right)}^{4}=\frac{{\left({j}^{3}\right)}^{4}}{{\left({k}^{2}\right)}^{4}}=\frac{{j}^{3\cdot 4}}{{k}^{2\cdot 4}}=\frac{{j}^{12}}{{k}^{8}}[/latex], [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}={\left(\frac{1}{{m}^{2}{n}^{2}}\right)}^{3}=\frac{{\left(1\right)}^{3}}{{\left({m}^{2}{n}^{2}\right)}^{3}}=\frac{1}{{\left({m}^{2}\right)}^{3}{\left({n}^{2}\right)}^{3}}=\frac{1}{{m}^{2\cdot 3}\cdot {n}^{2\cdot 3}}=\frac{1}{{m}^{6}{n}^{6}}[/latex], [latex]{\left(\frac{{b}^{5}}{c}\right)}^{3}[/latex], [latex]{\left(\frac{5}{{u}^{8}}\right)}^{4}[/latex], [latex]{\left(\frac{-1}{{w}^{3}}\right)}^{35}[/latex], [latex]{\left({p}^{-4}{q}^{3}\right)}^{8}[/latex], [latex]{\left({c}^{-5}{d}^{-3}\right)}^{4}[/latex], [latex]\frac{1}{{c}^{20}{d}^{12}}[/latex], [latex]{\left(6{m}^{2}{n}^{-1}\right)}^{3}[/latex], [latex]{17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}[/latex], [latex]{\left(\frac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}[/latex], [latex]\left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)[/latex], [latex]{\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}[/latex], [latex]\frac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}[/latex], [latex]\begin{array}{cccc}\hfill {\left(6{m}^{2}{n}^{-1}\right)}^{3}& =& {\left(6\right)}^{3}{\left({m}^{2}\right)}^{3}{\left({n}^{-1}\right)}^{3}\hfill & \text{The power of a product rule}\hfill \\ & =& {6}^{3}{m}^{2\cdot 3}{n}^{-1\cdot 3}\hfill & \text{The power rule}\hfill \\ & =& \text{ }216{m}^{6}{n}^{-3}\hfill & \text{Simplify}.\hfill \\ & =& \frac{216{m}^{6}}{{n}^{3}}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}& =& {17}^{5 - 4-3}\hfill & \text{The product rule}\hfill \\ & =& {17}^{-2}\hfill & \text{Simplify}.\hfill \\ & =& \frac{1}{{17}^{2}}\text{ or }\frac{1}{289}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {\left(\frac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}& =& \frac{{\left({u}^{-1}v\right)}^{2}}{{\left({v}^{-1}\right)}^{2}}\hfill & \text{The power of a quotient rule}\hfill \\ & =& \frac{{u}^{-2}{v}^{2}}{{v}^{-2}}\hfill & \text{The power of a product rule}\hfill \\ & =& {u}^{-2}{v}^{2-\left(-2\right)}& \text{The quotient rule}\hfill \\ & =& {u}^{-2}{v}^{4}\hfill & \text{Simplify}.\hfill \\ & =& \frac{{v}^{4}}{{u}^{2}}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)& =& -2\cdot 5\cdot {a}^{3}\cdot {a}^{-2}\cdot {b}^{-1}\cdot {b}^{2}\hfill & \text{Commutative and associative laws of multiplication}\hfill \\ & =& -10\cdot {a}^{3 - 2}\cdot {b}^{-1+2}\hfill & \text{The product rule}\hfill \\ & =& -10ab\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}& =& {\left({x}^{2}\sqrt{2}\right)}^{4 - 4}\hfill & \text{The product rule}\hfill \\ & =& \text{ }{\left({x}^{2}\sqrt{2}\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 1\hfill & \text{The zero exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}& =& \frac{{\left(3\right)}^{5}\cdot {\left({w}^{2}\right)}^{5}}{{\left(6\right)}^{2}\cdot {\left({w}^{-2}\right)}^{2}}\hfill & \text{The power of a product rule}\hfill \\ & =& \frac{{3}^{5}{w}^{2\cdot 5}}{{6}^{2}{w}^{-2\cdot 2}}\hfill & \text{The power rule}\hfill \\ & =& \frac{243{w}^{10}}{36{w}^{-4}}\hfill & \text{Simplify}.\hfill \\ & =& \frac{27{w}^{10-\left(-4\right)}}{4}\hfill & \text{The quotient rule and reduce fraction}\hfill \\ & =& \frac{27{w}^{14}}{4}\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]{\left(2u{v}^{-2}\right)}^{-3}[/latex], [latex]{x}^{8}\cdot {x}^{-12}\cdot x[/latex], [latex]{\left(\frac{{e}^{2}{f}^{-3}}{{f}^{-1}}\right)}^{2}[/latex], [latex]\left(9{r}^{-5}{s}^{3}\right)\left(3{r}^{6}{s}^{-4}\right)[/latex], [latex]{\left(\frac{4}{9}t{w}^{-2}\right)}^{-3}{\left(\frac{4}{9}t{w}^{-2}\right)}^{3}[/latex], [latex]\frac{{\left(2{h}^{2}k\right)}^{4}}{{\left(7{h}^{-1}{k}^{2}\right)}^{2}}[/latex]. Notice that the exponent of the quotient is the difference between the exponents of the divisor and dividend. The equations section lets you solve an equation or system of equations. Remember, we're simplifying using positive exponents, so we need to change x^-4. One way to think about math equations is to think of them as a puzzle. This can help you to develop a deeper understanding of math and how it applies to the real world, which can be useful in a variety of fields such as science, engineering, and finance. BYJU'S online negative exponents calculator tool makes the calculation faster, and it displays the result in a fraction of seconds. Example 2: Simplify the expression: 4ps - 2s - 3(ps +1) - 2s . As, in India, schools are closed so this is a very helpful app also for learning and answering for anyone, at first, when I took pictures with the camera it didn't always work, I didn't receive the answer I was looking for, because this app is so useful and easily accessable, my teacher doesn't allow it but they don't know that it shows you how to solve the problem which I think is awesome. For any nonzero real number [latex]a[/latex] and natural number [latex]n[/latex], the negative rule of exponents states that. Solve - Properties of rational exponents calculator. Choose "Simplify" from the topic selector and click to see the result in our Algebra Calculator!

What Replaced Redken Outshine 01, Sharkiest Beaches In California, Hally Williams Cooper Alan, What Is Your Body Lacking When You Get Boils, Articles H

how to simplify expressions with exponents calculator

how to simplify expressions with exponents calculator